

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

ReJSON Commands

Overview

Supported JSON

ReJSON aims to provide full support for ECMA-404 The JSON Data Interchange Standard [http://json.org/].

Below, the term JSON Value refers to any of the valid values. A Container is either a JSON Array or a JSON Object. A JSON Scalar is a JSON Number, a JSON String or a literal (JSON False, JSON True or JSON Null).

ReJSON API

Each of the module’s commands is described below. Each section
header shows the syntax for the command, where:

	Command and subcommand names are in uppercase, for example JSON.SET or INDENT

	Mandatory arguments are enclosed in angle brackets, e.g. <path>

	Optional arguments are enclosed in square brackets, e.g. [index]

	Additional optional arguments are indicated by three period characters, i.e. ...

	The pipe character, |, means an exclusive or

Commands usually require a key’s name as their first argument. The path is generally assumed to be the root if not specified.

The time complexity of the command does not include that of the path. The size - usually denoted N - of a value is:

	1 for scalar values

	The sum of sizes of items in a container

JSON.DEL

Available since 1.0.0.Time complexity: O(N), where N is the size of the deleted value.

Syntax

JSON.DEL <key> <path>

Description

Delete a value.

path defaults to root if not provided. Non-existing keys and paths are ignored. Deleting an object’s root is equivalent to deleting the key from Redis.

Return value

Integer [http://redis.io/topics/protocol#resp-integers], specifically the number of paths deleted (0 or 1).

JSON.GET

Available since 1.0.0.Time complexity: O(N), where N is the size of the value.

Syntax

JSON.GET <key>
 [INDENT indentation-string]
 [NEWLINE line-break-string]
 [SPACE space-string]
 [NOESCAPE]
 [path ...]

Description

Return the value at path in JSON serialized form.

This command accepts multiple paths, and defaults to the value’s root when none are given.

The following subcommands change the reply’s format and are all set to the empty string by default:

	INDENT sets the indentation string for nested levels

	NEWLINE sets the string that’s printed at the end of each line

	SPACE sets the string that’s put between a key and a value

The NOESCAPE option will disable the sending of \uXXXX escapes for non-ascii
characters. This option should be used for efficiency if you deal mainly with
such text. The escaping of JSON strings will be deprecated in the future and this
option will become the implicit default.

Pretty-formatted JSON is producible with redis-cli by following this example:

~/$ redis-cli --raw
127.0.0.1:6379> JSON.GET myjsonkey INDENT "\t" NEWLINE "\n" SPACE " " path.to.value[1]

Return value

Bulk String [http://redis.io/topics/protocol#resp-bulk-strings], specifically the JSON serialization.

The reply’s structure depends on the number of paths. A single path results in the value itself being returned, whereas multiple paths are returned as a JSON object in which each path is a key.

JSON.MGET

Available since 1.0.0.Time complexity: O(M*N), where M is the number of keys and N is the size of the value.

Syntax

JSON.MGET <key> [key ...] <path>

Description

Returns the values at path from multiple keys. Non-existing keys and non-existing paths are reported as null.

Return value

Array [http://redis.io/topics/protocol#resp-arrays] of Bulk Strings [http://redis.io/topics/protocol#resp-bulk-strings], specifically the JSON serialization of the value at each key’s
path.

JSON.SET

Available since 1.0.0.Time complexity: O(M+N), where M is the size of the original value (if it exists) and N is
the size of the new value.

Syntax

JSON.SET <key> <path> <json>
 [NX | XX]

Description

Sets the JSON value at path in key

For new Redis keys the path must be the root. For existing keys, when the entire path exists, the value that it contains is replaced with the json value.

A key (with its respective value) is added to a JSON Object (in a Redis ReJSON data type key) if and only if it is the last child in the path. The optional subcommands modify this behavior for both new Redis ReJSON data type keys as well as the JSON Object keys in them:

	NX - only set the key if it does not already exist

	XX - only set the key if it already exists

Return value

Simple String [http://redis.io/topics/protocol#resp-simple-strings] OK if executed correctly, or Null Bulk [http://redis.io/topics/protocol#resp-bulk-strings] if the specified NX or XX
conditions were not met.

JSON.TYPE

Available since 1.0.0.Time complexity: O(1).

Syntax

JSON.TYPE <key> [path]

Description

Report the type of JSON value at path.

path defaults to root if not provided. If the key or path do not exist, null is returned.

Return value

Simple String [http://redis.io/topics/protocol#resp-simple-strings], specifically the type of value.

JSON.NUMINCRBY

Available since 1.0.0.Time complexity: O(1).

Syntax

JSON.NUMINCRBY <key> <path> <number>

Description

Increments the number value stored at path by number.

Return value

Bulk String [http://redis.io/topics/protocol#resp-bulk-strings], specifically the stringified new value.

JSON.NUMMULTBY

Available since 1.0.0.Time complexity: O(1).

Syntax

JSON.NUMMULTBY <key> <path> <number>

Description

Multiplies the number value stored at path by number.

Return value

Bulk String [http://redis.io/topics/protocol#resp-bulk-strings], specifically the stringified new value.

JSON.STRAPPEND

Available since 1.0.0.Time complexity: O(N), where N is the new string’s length.

Syntax

JSON.STRAPPEND <key> [path] <json-string>

Description

Append the json-string value(s) the string at path.

path defaults to root if not provided.

Return value

Integer [http://redis.io/topics/protocol#resp-integers], specifically the string’s new length.

JSON.STRLEN

Available since 1.0.0.Time complexity: O(1).

Syntax

JSON.STRLEN <key> [path]

Description

Report the length of the JSON String at path in key.

path defaults to root if not provided. If the key or path do not exist, null is returned.

Return value

Integer [http://redis.io/topics/protocol#resp-integers], specifically the string’s length.

JSON.ARRAPPEND

Available since 1.0.0.Time complexity: O(1).

Syntax

JSON.ARRAPPEND <key> <path> <json> [json ...]

Description

Append the json value(s) into the array at path after the last element in it.

Return value

Integer [http://redis.io/topics/protocol#resp-integers], specifically the array’s new size.

JSON.ARRINDEX

Available since 1.0.0.Time complexity: O(N), where N is the array’s size.

Syntax

JSON.ARRINDEX <key> <path> <json-scalar> [start [stop]]

Search for the first occurrence of a scalar JSON value in an array.

The optional inclusive start (default 0) and exclusive stop (default 0, meaning that the last element is included) specify a slice of the array to search.

Note: out of range errors are treated by rounding the index to the array’s start and end. An inverse index range (e.g. from 1 to 0) will return unfound.

Return value

Integer [http://redis.io/topics/protocol#resp-integers], specifically the position of the scalar value in the array, or -1 if unfound.

JSON.ARRINSERT

Available since 1.0.0.Time complexity: O(N), where N is the array’s size.

Syntax

JSON.ARRINSERT <key> <path> <index> <json> [json ...]

Description

Insert the json value(s) into the array at path before the index (shifts to the right).

The index must be in the array’s range. Inserting at index 0 prepends to the array. Negative index values are interpreted as starting from the end.

Return value

Integer [http://redis.io/topics/protocol#resp-integers], specifically the array’s new size.

JSON.ARRLEN

Available since 1.0.0.Time complexity: O(1).

Syntax

JSON.ARRLEN <key> [path]

Report the length of the JSON Array at path in key.

path defaults to root if not provided. If the key or path do not exist, null is returned.

Return value

Integer [http://redis.io/topics/protocol#resp-integers], specifically the array’s length.

JSON.ARRPOP

Available since 1.0.0.Time complexity: O(N), where N is the array’s size for index other than the last element,
O(1) otherwise.

Syntax

JSON.ARRPOP <key> [path [index]]

Description

Remove and return element from the index in the array.

path defaults to root if not provided. index is the position in the array to start popping from (defaults to -1, meaning the last element). Out of range indices are rounded to their respective array ends. Popping an empty array yields null.

Return value

Bulk String [http://redis.io/topics/protocol#resp-bulk-strings], specifically the popped JSON value.

JSON.ARRTRIM

Available since 1.0.0.Time complexity: O(N), where N is the array’s size.

Syntax

JSON.ARRTRIM <key> <path> <start> <stop>

Description

Trim an array so that it contains only the specified inclusive range of elements.

This command is extremely forgiving and using it with out of range indexes will not produce an error. If start is larger than the array’s size or start > stop, the result will be an empty array. If start is < 0 then it will be treated as 0. If stop is larger than the end of the array, it will be treated like the last element in it.

Return value

Integer [http://redis.io/topics/protocol#resp-integers], specifically the array’s new size.

JSON.OBJKEYS

Available since 1.0.0.Time complexity: O(N), where N is the number of keys in the object.

Syntax

JSON.OBJKEYS <key> [path]

Description

Return the keys in the object that’s referenced by path.

path defaults to root if not provided. If the object is empty, or either key or path do not exist, then null is returned.

Return value

Array [http://redis.io/topics/protocol#resp-arrays], specifically the key names in the object as Bulk Strings [http://redis.io/topics/protocol#resp-bulk-strings].

JSON.OBJLEN

Available since 1.0.0.Time complexity: O(1).

Syntax

JSON.OBJLEN <key> [path]

Description

Report the number of keys in the JSON Object at path in key.

path defaults to root if not provided. If the key or path do not exist, null is returned.

Return value

Integer [http://redis.io/topics/protocol#resp-integers], specifically the number of keys in the object.

JSON.DEBUG

Available since 1.0.0.Time complexity: O(N), where N is the size of the JSON value.

Syntax

JSON.DEBUG <subcommand & arguments>

Description

Report information.

Supported subcommands are:

	MEMORY <key> [path] - report the memory usage in bytes of a value. path defaults to root if
not provided.

	HELP - reply with a helpful message

Return value

Depends on the subcommand used.

	MEMORY returns an integer [http://redis.io/topics/protocol#resp-integers], specifically the size in bytes of the value

	HELP returns an array [http://redis.io/topics/protocol#resp-arrays], specifically with the help message

JSON.FORGET

An alias for JSON.DEL.

JSON.RESP

Available since 1.0.0.Time complexity: O(N), where N is the size of the JSON value.

Syntax

JSON.RESP <key> [path]

Description

Return the JSON in key in Redis Serialization Protocol (RESP) [http://redis.io/topics/protocol].

path defaults to root if not provided. This command uses the following mapping from JSON to RESP:

	JSON Null is mapped to the RESP Null Bulk String [http://redis.io/topics/protocol]

	JSON false and true values are mapped to the respective RESP Simple Strings [http://redis.io/topics/protocol#resp-simple-strings]

	JSON Numbers are mapped to RESP Integers [http://redis.io/topics/protocol#resp-integers] or RESP Bulk Strings [http://redis.io/topics/protocol#resp-bulk-strings], depending on type

	JSON Strings are mapped to RESP Bulk Strings [http://redis.io/topics/protocol#resp-bulk-strings]

	JSON Arrays are represented as RESP Arrays [http://redis.io/topics/protocol#resp-arrays] in which the first element is the simple string [http://redis.io/topics/protocol#resp-simple-strings] [followed by the array’s elements

	JSON Objects are represented as RESP Arrays [http://redis.io/topics/protocol#resp-arrays] in which the first element is the simple string [http://redis.io/topics/protocol#resp-simple-strings] {. Each successive entry represents a key-value pair as a two-entries array [http://redis.io/topics/protocol#resp-arrays] of bulk strings [http://redis.io/topics/protocol#resp-bulk-strings].

Return value

Array [http://redis.io/topics/protocol#resp-arrays], specifically the JSON’s RESP form as detailed.

Developer notes

Debugging

Compile after settting the environment variable DEBUG, e.g. export DEBUG=1, to include the
debugging information.

Testing

Python is required for ReJSON’s module test. Install it with apt-get install python. You’ll also
need to have redis-py [https://github.com/andymccurdy/redis-py] installed. The easiest way to get
it is using pip and running pip install redis.

The module’s test can be run against an “embedded” disposable Redis instance, or against an instance
you provide to it. The “embedded” mode requires having the redis-server executable in your PATH.
To run the tests, run the following in the project’s directory:

$ # use a disposable Redis instance for testing the module
$ make test

You can override the spawning of the embedded server by specifying a Redis port via the REDIS_PORT
environment variable, e.g.:

$ # use an existing local Redis instance for testing the module
$ REDIS_PORT=6379 make test

Documentation

	Prerequisites: pip install mkdocs mkdocs-material

	To build and serve locally: make localdocs

	To deploy to the website: make deploydocs

ReJSON Path

Since there does not exist a standard for path syntax, ReJSON implements its own. ReJSON’s syntax is a subset of common best practices and resembles JSONPath [http://goessner.net/articles/JsonPath/] not by accident.

Paths always begin at the root of a ReJSON value. The root is denoted by the period character (.). For paths referencing the root’s children, prefixing the path with the root is optional.

Dotted- and square-bracketed, single-or-double-quoted-child notation are both supported for object keys, so the following paths all refer to bar, child of foo under the root:

	.foo.bar

	foo["bar"]

	['foo']["bar"]

Array elements are accessed by their index enclosed by a pair of square brackets. The index is 0-based, with 0 being the first element of the array, 1 being the next element and so on. These offsets can also be negative numbers, indicating indices starting at the end of the array. For example, -1 is the last element in the array, -2 the penultimate, and so on.

A note about JSON key names and path compatibility

By definition, a JSON key can be any valid JSON String. Paths, on the other hand, are traditionally based on JavaScript’s (and in Java in turn) variable naming conventions. Therefore, while it is possible to have ReJSON store objects containing arbitrary key names, accessing these keys via a path will only be possible if they respect these naming syntax rules:

	Names must begin with a letter, a dollar ($) or an underscore (_) character

	Names can contain letters, digits, dollar signs and underscores

	Names are case-sensitive

Time complexity of path evaluation

The complexity of searching (navigating to) an element in the path is made of:

	Child level - every level along the path adds an additional search

	Key search - O(N)†, where N is the number of keys in the parent object

	Array search - O(1)

This means that the overall time complexity of searching a path is O(N*M), where N is the depth and M is the number of parent object keys.

† while this is acceptable for objects where N is small, access can be optimized for larger objects, and this is planned for a future version.

Performance

To get an early sense of what ReJSON is capable of, you can test it with redis-benchmark just like
any other Redis command. However, in order to have more control over the tests, we’ll use a
a tool written in Go called ReJSONBenchmark that we expect to release in the near future.

The following figures were obtained from an AWS EC2 c4.8xlarge instance that ran both the Redis
server as well the as the benchmarking tool. Connections to the server are via the networking stack.
All tests are non-pipelined.

NOTE: The results below are measured using the preview version of ReJSON, which is still very much
unoptimized.

ReJSON baseline

A smallish object

We test a JSON value that, while purely synthetic, is interesting. The test subject is
/test/files/pass-100.json [https://github.com/RedisLabsModules/rejson/blob/master/test/files/pass-100.json],
who weighs in at 380 bytes and is nested. We first test SETting it, then GETting it using several
different paths:

[image: _images/bench_pass_100.png]ReJSONBenchmark pass-100.json

[image: _images/bench_pass_100_p.png]ReJSONBenchmark pass-100.json percentiles

A bigger array

Moving on to bigger values, we use the 1.4 kB array in
/test/files/pass-jsonsl-1.json [https://github.com/RedisLabsModules/rejson/blob/master/test/files/pass-jsonsl-1.json]:

[image: _images/bench_pass_jsonsl_1.png]ReJSONBenchmark pass-jsonsl-1.json

[image: _images/bench_pass_jsonsl_1_p.png]ReJSONBenchmark pass-jsonsl-1.json percentiles

A largish object

More of the same to wrap up, now we’ll take on a behemoth of no less than 3.5 kB as given by
/test/files/pass-json-parser-0000.json [https://github.com/RedisLabsModules/rejson/blob/master/test/files/pass-json-parser-0000.json]:

[image: _images/bench_pass_json_parser_0000.png]ReJSONBenchmark pass-json-parser-0000.json

[image: _images/bench_pass_json_parser_0000_p.png]ReJSONBenchmark pass-json-parser-0000.json percentiles

Number operations

Last but not least, some adding and multiplying:

[image: _images/bench_numbers.png]ReJSONBenchmark number operations

[image: _images/bench_numbers_p.png]ReJSONBenchmark number operations percentiles

Baseline

To establish a baseline, we’ll use the Redis PING [https://redis.io/commands/ping] command.
First, lets see what redis-benchmark reports:

~$ redis/src/redis-benchmark -n 1000000 ping
====== ping ======
 1000000 requests completed in 7.11 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.99% <= 1 milliseconds
100.00% <= 1 milliseconds
140587.66 requests per second

ReJSONBenchmark’s concurrency is configurable, so we’ll test a few settings to find a good one. Here
are the results, which indicate that 16 workers yield the best throughput:

[image: _images/bench_ping.png]ReJSONBenchmark PING

[image: _images/bench_ping_p.png]ReJSONBenchmark PING percentiles

Note how our benchmarking tool does slightly worse in PINGing - producing only 116K ops, compared to
redis-cli’s 140K.

The empty string

Another ReJSON benchmark is that of setting and getting an empty string - a value that’s only two
bytes long (i.e. ""). Granted, that’s not very useful, but it teaches us something about the basic
performance of the module:

[image: _images/bench_empty_string.png]ReJSONBenchmark empty string

[image: _images/bench_empty_string_p.png]ReJSONBenchmark empty string percentiles

Comparison vs. server-side Lua scripting

We compare ReJSON’s performance with Redis’ embedded Lua engine. For this purpose, we use the Lua
scripts at /benchmarks/lua [https://github.com/RedisLabsModules/rejson/tree/master/benchmarks/lua].
These scripts provide ReJSON’s GET and SET functionality on values stored in JSON or MessagePack
formats. Each of the different operations (set root, get root, set path and get path) is executed
with each “engine” on objects of varying sizes.

Setting and getting the root

Storing raw JSON performs best in this test, but that isn’t really surprising as all it does is
serve unprocessed strings. While you can and should use Redis for caching opaque data, and JSON
“blobs” are just one example, this does not allow any updates other than these of the entire value.

A more meaningful comparison therefore is between ReJSON and the MessagePack variant, since both
process the incoming JSON value before actually storing it. While the rates and latencies of these
two behave in a very similar way, the absolute measurements suggest that ReJSON’s performance may be
further improved.

[image: _images/bench_lua_set_root.png]VS. Lua set root

[image: _images/bench_lua_set_root_l.png]VS. Lua set root latency

[image: _images/bench_lua_get_root.png]VS. Lua get root

[image: _images/bench_lua_get_root_l.png]VS. Lua get root latency

Setting and getting parts of objects

This test shows why ReJSON exists. Not only does it outperform the Lua variants, it retains constant
rates and latencies regardless the object’s overall size. There’s no magic here - ReJSON keeps the
value deserialized so that accessing parts of it is a relatively inexpensive operation. In deep contrast
are both raw JSON as well as MessagePack, which require decoding the entire object before anything can
be done with it (a process that becomes more expensive the larger the object is).

[image: _images/bench_lua_set_path.png]VS. Lua set path to scalar

[image: _images/bench_lua_set_path_l.png]VS. Lua set path to scalar latency

[image: _images/bench_lua_get_path.png]VS. Lua get scalar from path

[image: _images/bench_lua_get_path_l.png]VS. Lua get scalar from path latency

Even more charts

These charts are more of the same but independent for each file (value):

[image: _images/bench_lua_pass_100.png]VS. Lua pass-100.json rate

[image: _images/bench_lua_pass_100_l.png]VS. Lua pass-100.json average latency

[image: _images/bench_lua_pass_jsonsl_1.png]VS. Lua pass-jsonsl-1.json rate

[image: _images/bench_lua_pass_jsonsl_1_l.png]VS. Lua pass-jsonsl-1.json average latency

[image: _images/bench_lua_pass_json_parser_0000.png]VS. Lua pass-json-parser-0000.json rate

[image: _images/bench_lua_pass_json_parser_0000_l.png]VS. Lua pass-json-parser-0000.json latency

[image: _images/bench_lua_pass_jsonsl_yahoo2.png]VS. Lua pass-jsonsl-yahoo2.json rate

[image: _images/bench_lua_pass_jsonsl_yahoo2_l.png]VS. Lua pass-jsonsl-yahoo2.json latency

[image: _images/bench_lua_pass_jsonsl_yelp.png]VS. Lua pass-jsonsl-yelp.json rate

[image: _images/bench_lua_pass_jsonsl_yelp_l.png]VS. Lua pass-jsonsl-yelp.json latency

Raw results

The following are the raw results from the benchmark in CSV format.

ReJSON results

title,concurrency,rate,average latency,50.00%-tile,90.00%-tile,95.00%-tile,99.00%-tile,99.50%-tile,100.00%-tile
[ping],1,22128.12,0.04,0.04,0.04,0.05,0.05,0.05,1.83
[ping],2,54641.13,0.04,0.03,0.05,0.05,0.06,0.07,2.14
[ping],4,76000.18,0.05,0.05,0.07,0.07,0.09,0.10,2.10
[ping],8,106750.99,0.07,0.07,0.10,0.11,0.14,0.16,2.99
[ping],12,111297.33,0.11,0.10,0.15,0.16,0.20,0.22,6.81
[ping],16,116292.19,0.14,0.13,0.19,0.21,0.27,0.33,7.50
[ping],20,110622.82,0.18,0.17,0.24,0.27,0.38,0.47,12.21
[ping],24,107468.51,0.22,0.20,0.31,0.38,0.58,0.71,13.86
[ping],28,102827.35,0.27,0.25,0.38,0.44,0.66,0.79,12.87
[ping],32,105733.51,0.30,0.28,0.42,0.50,0.79,0.97,10.56
[ping],36,102046.43,0.35,0.33,0.48,0.56,0.90,1.13,14.66
JSON.SET {key} . {empty string size: 2 B},16,80276.63,0.20,0.18,0.28,0.32,0.41,0.45,6.48
JSON.GET {key} .,16,92191.23,0.17,0.16,0.24,0.27,0.34,0.38,9.80
JSON.SET {key} . {pass-100.json size: 380 B},16,41512.77,0.38,0.35,0.50,0.62,0.81,0.86,9.56
JSON.GET {key} .,16,48374.10,0.33,0.29,0.47,0.56,0.72,0.79,9.36
JSON.GET {key} sclr,16,94801.23,0.17,0.15,0.24,0.27,0.35,0.39,13.21
JSON.SET {key} sclr 1,16,82032.08,0.19,0.18,0.27,0.31,0.40,0.44,8.97
JSON.GET {key} sub_doc,16,81633.51,0.19,0.18,0.27,0.32,0.43,0.49,9.88
JSON.GET {key} sub_doc.sclr,16,95052.35,0.17,0.15,0.24,0.27,0.35,0.39,7.39
JSON.GET {key} array_of_docs,16,68223.05,0.23,0.22,0.29,0.31,0.44,0.50,8.84
JSON.GET {key} array_of_docs[1],16,76390.57,0.21,0.19,0.30,0.34,0.44,0.49,9.99
JSON.GET {key} array_of_docs[1].sclr,16,90202.13,0.18,0.16,0.25,0.29,0.36,0.39,7.87
JSON.SET {key} . {pass-jsonsl-1.json size: 1.4 kB},16,16117.11,0.99,0.91,1.22,1.55,2.17,2.35,9.27
JSON.GET {key} .,16,15193.51,1.05,0.94,1.41,1.75,2.33,2.42,7.19
JSON.GET {key} [0],16,78198.90,0.20,0.19,0.29,0.33,0.42,0.47,10.87
"JSON.SET {key} [0] ""foo""",16,80156.90,0.20,0.18,0.28,0.32,0.40,0.44,12.03
JSON.GET {key} [7],16,99013.98,0.16,0.15,0.23,0.26,0.34,0.38,7.67
JSON.GET {key} [8].zero,16,90562.19,0.17,0.16,0.25,0.28,0.35,0.38,7.03
JSON.SET {key} . {pass-json-parser-0000.json size: 3.5 kB},16,14239.25,1.12,1.06,1.21,1.48,2.35,2.59,11.91
JSON.GET {key} .,16,8366.31,1.91,1.86,2.00,2.04,2.92,3.51,12.92
"JSON.GET {key} [""web-app""].servlet",16,9339.90,1.71,1.68,1.74,1.78,2.68,3.26,10.47
"JSON.GET {key} [""web-app""].servlet[0]",16,13374.88,1.19,1.07,1.54,1.95,2.69,2.82,12.15
"JSON.GET {key} [""web-app""].servlet[0][""servlet-name""]",16,81267.36,0.20,0.18,0.28,0.31,0.38,0.42,9.67
"JSON.SET {key} [""web-app""].servlet[0][""servlet-name""] ""bar""",16,79955.04,0.20,0.18,0.27,0.33,0.42,0.46,6.72
JSON.SET {key} . {pass-jsonsl.yahoo2-json size: 18 kB},16,3394.07,4.71,4.62,4.72,4.79,7.35,9.03,17.78
JSON.GET {key} .,16,891.46,17.92,17.33,17.56,20.12,31.77,42.87,66.64
JSON.SET {key} ResultSet.totalResultsAvailable 1,16,75513.03,0.21,0.19,0.30,0.34,0.42,0.46,9.21
JSON.GET {key} ResultSet.totalResultsAvailable,16,91202.84,0.17,0.16,0.24,0.28,0.35,0.38,5.30
JSON.SET {key} . {pass-jsonsl-yelp.json size: 40 kB},16,1624.86,9.84,9.67,9.86,9.94,15.86,19.36,31.94
JSON.GET {key} .,16,442.55,36.08,35.62,37.78,38.14,55.23,81.33,88.40
JSON.SET {key} message.code 1,16,77677.25,0.20,0.19,0.28,0.33,0.42,0.45,11.07
JSON.GET {key} message.code,16,89206.61,0.18,0.16,0.25,0.28,0.36,0.39,8.60
[JSON.SET num . 0],16,84498.21,0.19,0.17,0.26,0.30,0.39,0.43,8.08
[JSON.NUMINCRBY num . 1],16,78640.20,0.20,0.18,0.28,0.33,0.44,0.48,11.05
[JSON.NUMMULTBY num . 2],16,77170.85,0.21,0.19,0.28,0.33,0.43,0.47,6.85

Lua using cjson

json-set-root.lua empty string,16,86817.84,0.18,0.17,0.26,0.31,0.39,0.42,9.36
json-get-root.lua,16,90795.08,0.17,0.16,0.25,0.28,0.36,0.39,8.75
json-set-root.lua pass-100.json,16,84190.26,0.19,0.17,0.27,0.30,0.38,0.41,12.00
json-get-root.lua,16,87170.45,0.18,0.17,0.26,0.29,0.38,0.45,9.81
json-get-path.lua sclr,16,54556.80,0.29,0.28,0.35,0.38,0.57,0.64,7.53
json-set-path.lua sclr 1,16,35907.30,0.44,0.42,0.53,0.67,0.93,1.00,8.57
json-get-path.lua sub_doc,16,51158.84,0.31,0.30,0.36,0.39,0.50,0.62,7.22
json-get-path.lua sub_doc sclr,16,51054.47,0.31,0.29,0.39,0.47,0.66,0.74,7.43
json-get-path.lua array_of_docs,16,39103.77,0.41,0.37,0.57,0.68,0.87,0.94,8.02
json-get-path.lua array_of_docs 1,16,45811.31,0.35,0.32,0.45,0.56,0.77,0.83,8.17
json-get-path.lua array_of_docs 1 sclr,16,47346.83,0.34,0.31,0.44,0.54,0.72,0.79,8.07
json-set-root.lua pass-jsonsl-1.json,16,82100.90,0.19,0.18,0.28,0.31,0.39,0.43,12.43
json-get-root.lua,16,77922.14,0.20,0.18,0.30,0.34,0.66,0.86,8.71
json-get-path.lua 0,16,38162.83,0.42,0.40,0.49,0.59,0.88,0.96,6.16
"json-set-path.lua 0 ""foo""",16,21205.52,0.75,0.70,0.84,1.07,1.60,1.74,5.77
json-get-path.lua 7,16,37254.89,0.43,0.39,0.55,0.69,0.92,0.98,10.24
json-get-path.lua 8 zero,16,33772.43,0.47,0.43,0.63,0.77,1.01,1.09,7.89
json-set-root.lua pass-json-parser-0000.json,16,76314.18,0.21,0.19,0.29,0.33,0.41,0.44,8.16
json-get-root.lua,16,65177.87,0.24,0.21,0.35,0.42,0.89,1.01,9.02
json-get-path.lua web-app servlet,16,15938.62,1.00,0.88,1.45,1.71,2.11,2.20,8.07
json-get-path.lua web-app servlet 0,16,19469.27,0.82,0.78,0.90,1.07,1.67,1.84,7.59
json-get-path.lua web-app servlet 0 servlet-name,16,24694.26,0.65,0.63,0.71,0.74,1.07,1.31,8.60
"json-set-path.lua web-app servlet 0 servlet-name ""bar""",16,16555.74,0.96,0.92,1.05,1.25,1.98,2.20,9.08
json-set-root.lua pass-jsonsl-yahoo2.json,16,47544.65,0.33,0.31,0.41,0.47,0.59,0.64,10.52
json-get-root.lua,16,25369.92,0.63,0.57,0.91,1.05,1.37,1.56,9.95
json-set-path.lua ResultSet totalResultsAvailable 1,16,5077.32,3.15,3.09,3.20,3.24,5.12,6.26,14.98
json-get-path.lua ResultSet totalResultsAvailable,16,7652.56,2.09,2.05,2.13,2.17,3.23,3.95,9.65
json-set-root.lua pass-jsonsl-yelp.json,16,29575.20,0.54,0.52,0.64,0.75,0.94,1.00,12.66
json-get-root.lua,16,18424.29,0.87,0.84,1.25,1.40,1.82,1.95,7.35
json-set-path.lua message code 1,16,2251.07,7.10,6.98,7.14,7.22,11.00,12.79,21.14
json-get-path.lua message code,16,3380.72,4.73,4.44,5.03,6.82,10.28,11.06,14.93

Lua using cmsgpack

msgpack-set-root.lua empty string,16,82592.66,0.19,0.18,0.27,0.31,0.38,0.42,10.18
msgpack-get-root.lua,16,89561.41,0.18,0.16,0.25,0.29,0.37,0.40,9.52
msgpack-set-root.lua pass-100.json,16,44326.47,0.36,0.34,0.43,0.54,0.78,0.86,6.45
msgpack-get-root.lua,16,41036.58,0.39,0.36,0.51,0.62,0.84,0.91,7.21
msgpack-get-path.lua sclr,16,55845.56,0.28,0.26,0.36,0.44,0.64,0.70,11.29
msgpack-set-path.lua sclr 1,16,43608.26,0.37,0.34,0.47,0.58,0.78,0.85,10.27
msgpack-get-path.lua sub_doc,16,50153.07,0.32,0.29,0.41,0.50,0.69,0.75,8.56
msgpack-get-path.lua sub_doc sclr,16,54016.35,0.29,0.27,0.38,0.46,0.62,0.67,6.38
msgpack-get-path.lua array_of_docs,16,45394.79,0.35,0.32,0.45,0.56,0.78,0.85,11.88
msgpack-get-path.lua array_of_docs 1,16,48336.48,0.33,0.30,0.42,0.52,0.71,0.76,7.69
msgpack-get-path.lua array_of_docs 1 sclr,16,53689.41,0.30,0.27,0.38,0.46,0.64,0.69,11.16
msgpack-set-root.lua pass-jsonsl-1.json,16,28956.94,0.55,0.51,0.65,0.82,1.17,1.26,8.39
msgpack-get-root.lua,16,26045.44,0.61,0.58,0.68,0.83,1.28,1.42,8.56
"msgpack-set-path.lua 0 ""foo""",16,29813.56,0.53,0.49,0.67,0.83,1.15,1.22,6.82
msgpack-get-path.lua 0,16,44827.58,0.36,0.32,0.48,0.58,0.76,0.81,9.19
msgpack-get-path.lua 7,16,47529.14,0.33,0.31,0.42,0.53,0.73,0.79,7.47
msgpack-get-path.lua 8 zero,16,44442.72,0.36,0.33,0.45,0.56,0.77,0.85,8.11
msgpack-set-root.lua pass-json-parser-0000.json,16,19585.82,0.81,0.78,0.85,1.05,1.66,1.86,4.33
msgpack-get-root.lua,16,19014.08,0.84,0.73,1.23,1.45,1.76,1.84,13.52
msgpack-get-path.lua web-app servlet,16,18992.61,0.84,0.73,1.23,1.45,1.75,1.82,8.19
msgpack-get-path.lua web-app servlet 0,16,24328.78,0.66,0.64,0.73,0.77,1.15,1.34,8.81
msgpack-get-path.lua web-app servlet 0 servlet-name,16,31012.81,0.51,0.49,0.57,0.65,1.02,1.13,8.11
"msgpack-set-path.lua web-app servlet 0 servlet-name ""bar""",16,20388.54,0.78,0.73,0.88,1.08,1.63,1.78,7.22
msgpack-set-root.lua pass-jsonsl-yahoo2.json,16,5597.60,2.85,2.81,2.89,2.94,4.57,5.59,10.19
msgpack-get-root.lua,16,6585.01,2.43,2.39,2.52,2.66,3.76,4.80,10.59
msgpack-set-path.lua ResultSet totalResultsAvailable 1,16,6666.95,2.40,2.35,2.43,2.47,3.78,4.59,12.08
msgpack-get-path.lua ResultSet totalResultsAvailable,16,10733.03,1.49,1.45,1.60,1.66,2.36,2.93,13.15
msgpack-set-root-lua pass-jsonsl-yelp.json,16,2291.53,6.97,6.87,7.01,7.12,10.54,12.89,21.75
msgpack-get-root.lua,16,2889.59,5.53,5.45,5.71,5.86,8.80,10.48,25.55
msgpack-set-path.lua message code 1,16,2847.85,5.61,5.44,5.56,6.01,10.58,11.90,16.91
msgpack-get-path.lua message code,16,5030.95,3.18,3.07,3.24,3.57,6.08,6.92,12.44

ReJSON RAM Usage

Every key in Redis takes memory and requires at least the amount of RAM to store the key name, as
well as some per-key overhead that Redis uses. On top of that, the value in the key also requires
RAM.

ReJSON stores JSON values as binary data after deserializing them. This representation is often more
expensive, size-wize, than the serialized form. The ReJSON data type uses at least 24 bytes (on
64-bit architectures) for every value, as can be seen by sampling an empty string with the
JSON.DEBUG MEMORY command:

127.0.0.1:6379> JSON.SET emptystring . '""'
OK
127.0.0.1:6379> JSON.DEBUG MEMORY emptystring
(integer) 24

This RAM requirement is the same for all scalar values, but strings require additional space
depending on their actual length. For example, a 3-character string will use 3 additional bytes:

127.0.0.1:6379> JSON.SET foo . '"bar"'
OK
127.0.0.1:6379> JSON.DEBUG MEMORY foo
(integer) 27

Empty containers take up 32 bytes to set up:

127.0.0.1:6379> JSON.SET arr . '[]'
OK
127.0.0.1:6379> JSON.DEBUG MEMORY arr
(integer) 32
127.0.0.1:6379> JSON.SET obj . '{}'
OK
127.0.0.1:6379> JSON.DEBUG MEMORY obj
(integer) 32

The actual size of a container is the sum of sizes of all items in it on top of its own
overhead. To avoid expensive memory reallocations, containers’ capacity is scaled by multiples of 2
until a treshold size is reached, from which they grow by fixed chunks.

A container with a single scalar is made up of 32 and 24 bytes, respectively:

127.0.0.1:6379> JSON.SET arr . '[""]'
OK
127.0.0.1:6379> JSON.DEBUG MEMORY arr
(integer) 56

A container with two scalars requires 40 bytes for the container (each pointer to an entry in the
container is 8 bytes), and 2 * 24 bytes for the values themselves:

127.0.0.1:6379> JSON.SET arr . '["", ""]'
OK
127.0.0.1:6379> JSON.DEBUG MEMORY arr
(integer) 88

A 3-item (each 24 bytes) container will be allocated with capacity for 4 items, i.e. 56 bytes:

127.0.0.1:6379> JSON.SET arr . '["", "", ""]'
OK
127.0.0.1:6379> JSON.DEBUG MEMORY arr
(integer) 128

The next item will not require an allocation in the container, so usage will increase only by that
scalar’s requirement, but another value will scale the container again:

127.0.0.1:6379> JSON.SET arr . '["", "", "", ""]'
OK
127.0.0.1:6379> JSON.DEBUG MEMORY arr
(integer) 152
127.0.0.1:6379> JSON.SET arr . '["", "", "", "", ""]'
OK
127.0.0.1:6379> JSON.DEBUG MEMORY arr
(integer) 208

This table gives the size (in bytes) of a few of the test files on disk and when stored using
ReJSON. The MessagePack column is for reference purposes and reflects the length of the value
when stored using MessagePack.

File	Filesize	ReJSON	MessagePack
————————————–	———	——	———–
/test/files/pass-100.json	380	1079	140
/test/files/pass-jsonsl-1.json	1441	3666	753
/test/files/pass-json-parser-0000.json	3468	7209	2393
/test/files/pass-jsonsl-yahoo2.json	18446	37469	16869
/test/files/pass-jsonsl-yelp.json	39491	75341	35469

Note: In the current version, deleting values from containers does not free the container’s
allocated memory.

 _static/up.png

_images/bench_lua_get_root_l.png
Latency (msec)

40

0

2

10

GET {key} . average latency

4000

12000

20000

Value size (bytes)

28000

36000

— ReJSON
average
latency

— jsonlua
average
latency

— msgpack
[
average
latency

_images/bench_lua_pass_100.png
Rate (op/s)

pass-100 json (380 B) rate

100000 — Resson
ate
— jsoniua
75000 ate
— msgpack
ua ate
50000
25000
) o S
RSO S IS S S
Sl S, o\ﬁwﬁb‘,ﬁ? @

_images/bench_lua_get_path_l.png
Rate (op/s)

45

15

GET {key} {path} <- scalar-value average latency

— ReJSON
average
latency

— jsonlua
average
latency

— msgpack
[
average
latency

4000 12000 20000 28000 36000

Undertying value size (bytes)

_images/bench_lua_get_root.png
Rate (op/s)

GET {key} . rate
100000

75000

50000

25000

4000 12000 20000 28000 36000

Value size (bytes)

— ReJSON
rate

— jsonlua
rate

— msgpack
lua rate

_images/bench_lua_pass_json_parser_0000_l.png
Latency (msec)

pass-json-parser-0000 json (3468 B) average

latency
15
1
05
0
e T
AT o e
¢ R TR
<3 <3 & ES

— ReJSON
average
latency

— jsonlua
average
latency

— msgpack
[
average
latency

_images/bench_lua_pass_jsonsl_1.png
Rate (op/s)

passJsonsl-1.json (1441 B) rate

100000 — Resson
rate
— jsonlua
75000 rate
— mspack
ua rate
50000
25000
0
o ©
‘\\ﬁ 6&’\‘@\ g*"\ ‘\\“\« < “\\W’
@ L E A P

_images/bench_lua_pass_100_l.png
Latency (msec)

pass-100 json (380 B) average latency

05

0375

025

0125

RIS
AT @ 3
Q@ eﬁ &“2_,@“’*@‘*

JES Y

&
02 58 @0 @S
o7 w08 @

ECAC

5
s
@

— ReJSON
average
latency

— jsonlua
average
latency

— msgpack
[
average
latency

_images/bench_lua_pass_json_parser_0000.png
Rate (op/s)

pass-json-parser-0000 json (3468 B) rate

100000
75000
50000
25000
0
g b
@ E a0 a0 g e
&V A W (e ¥
SR

— ReJSON
rate

— jsonlua
rate

— msgpack
lua rate

_images/bench_lua_pass_jsonsl_1_l.png
Latency (msec)

12

08

08

03

pass-jsonsl-1.json (1441 B) average latency

— ReJSON
average
latency

— jsonlua
average
latency

— msgpack
[
average
latency

_images/bench_lua_pass_jsonsl_yahoo2.png
Rate (op/s)

passsonsl-yahoo2.json (18446 B) rate

100000 — Resson
ate
— jsoniua
75000 ate
— msgpack
arate
50000
25000
’ &
@
W < o o
e <3 @ *\v&
o A A

_images/bench_empty_string.png
Rate

96000

92000

88000

84000

80000

The empty string -2 bytes
—Rate — Average latency

JSONSET fkey} . "

JSON.GET (key}

019

018

017

Latency msec

_images/bench_empty_string_p.png
Latency msec

The empty string percentiles

10 s0th
— a0t
— gt
— gt
— 995t
— 100th

e
i
_—
-_

JSONSET fkey} . " JSON.GET (key}

_images/bench_lua_get_path.png
Rate (op/s)

100000

75000

50000

25000

GET {key} {path} <- scalar-value rate

— ReJSON
rate

— jsonlua
rate

— msgpack
lua rate

4000 12000 20000 28000 36000

Undertying value size (bytes)

_images/bench_lua_pass_jsonsl_yahoo2_l.png
Latency (msec)

passsonsl-yahoo2 json (18446 B) average

latency
2
1
10
5
’)
B
o P & -
vt N
¥ e e

— ReJSON
average
latency

— jsonlua
average
latency

— msgpack
[
average
latency

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/bench_lua_set_path.png
Rate (op/s)

SET {key} {path} {scalar-value} rate

100000 — ReJsON
rate
— —enma
75000 rate
— msgpack
lua rate
50000
25000
0
4000 12000 20000 28000 36000

Undertying value size (bytes)

_images/bench_lua_set_path_l.png
Latency (msec)

SET {key} {path} {scalar-value} average latency

4000 12000 20000 28000 36000

Undertying value size (bytes)

— ReJSON
average
latency

— jsonlua
average
latency

— msgpack
[
average
latency

_images/bench_lua_pass_jsonsl_yelp.png
Rate (op/s)

passsonsl-yelp.json (39491 B) rate
100000

75000

50000

25000

— ReJSON
rate

— jsonlua
rate

— msgpack
lua rate

_images/bench_lua_pass_jsonsl_yelp_l.png
Latency (msec)

passjsonsl-yelp json (39491 B) average latency

— ReJSON
average
latency

— jsonlua
average
latency

— msgpack
[
average
latency

_images/bench_numbers.png
Rate

Number operations
—Rate — Average latency

85000

82500

80000

77500

022

021

02

019

018

Latency msec

_images/bench_numbers_p.png
Latency msec

Number operations percentiles

10 //\

— 50t
— a0t
— gt
— gt
— 995t
— 100th

_images/bench_lua_set_root.png
Rate (op/s)

100000

75000

50000

25000

SET {key} . {value} rate

— ReJSON
rate

— jsonlua
rate

— msgpack
lua rate

4000 12000 20000 28000 36000

Value size (bytes)

_images/bench_lua_set_root_l.png
Latency (msec)

10

75

25

SET {key} . {value} average latency

— ReJSON
average
latency

— jsonlua
average
latency

— msgpack
[
average
latency

4000 12000 20000 28000 36000

Value size (bytes)

_images/bench_pass_100.png
Rate

pass-100,json - 380 bytes

— Rate — Average latency
100000
75000
50000
25000
’ @D e o O e
f"d;_,oﬂ et =% /w; T %

RS
& o

04

01

Latency msec

_images/bench_pass_100_p.png
Latency msec

pass-100 json percentiles

— 50t

10 —/\/\ — 90t
— gt
— gt
— 995t
— 100th

2 I e .
BT B (@ o8 s 8T e
T & W7 @ S a8

= o - L

_images/bench_pass_json_parser_0000.png
Rate

100000

75000

50000

25000

pass-json-parser-0000 json - 35 kB
— Rate

— Average latency

15

05

Latency msec

_images/bench_pass_jsonsl_1_p.png
Latency msec

(|

pass-jsonsl-1.json percentiles

10 — 50t
— a0t
— gt
— gt
— 995t

— 100th

JSON.SET JSON.GET o m B1zer0
fhey)."r (key)

_images/bench_ping.png
Rate

120000

90000

60000

30000

PING

— Rate

— Average latency

1

1

Concurrency

24

0

36

04

03

02

01

Latency msec

_images/bench_pass_json_parser_0000_p.png
Latency msec

pass-json-parser-0000 json percentiles

N —
1
. & o o
e Q{\ae" L
22 28 J
o o o o &

— 50t
— a0t
— gt
— gt
— 995t
— 100th

_images/bench_pass_jsonsl_1.png
Rate

100000

75000

50000

25000

passJsonsl-1json - 14 kB
— Average latency

— Rate

JSON.SET JSON.GET

ey

they)

o

[y

[Blzer0

08

08

03

Latency msec

_static/comment-bright.png

_images/bench_ping_p.png
Latency msec

PING latency percentiles

— som
o — 90th
— s
— o
— o
1 — 100m
01

6 12 18 2 0]

Concurrency

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/plus.png

